

Cherry Creek Reservoir Sediment Phosphorus Study

6/2/22 CCBWQA TAC Meeting

Project Objectives

To understand the internal loading potential which can affect reservoir primary productivity (algal growth), and chlorophyll-a concentrations.

- Spatial variability of sediment phosphorus concentrations,
- Mobile phosphorus that may be involved in nutrient cycling/ readily available to drive algal growth, and
- Variability of concentrations/ fractions w/ sed. depth.

Methods

Phase 1 - Spatial Analysis 26 sample collection locations (~ 40 acres each)

- Composition
- Total P
- Moisture content

Phase 1 Spatial Analysis Results

Inlets and shorelines

- Larger particles (sand/ gravel)
- Lower P
- Lower moisture

Center of Reservoir

- Fine sediment size
- Higher P
- Increased moisture

CHERRY CREEK RESERVOIR

Estimated Total Phosphorus Concentrations May 2021

Phase 2 - Sampling Sites

Zone	Average P	Phase 2 Sampling Site(s) – TP	General Location				23		All and a second
1	134 mg/kg	13 - 112 mg/kg TP	South - Cherry Creek Inlet	HAR DO	.25	.20	.21	.22	
2	510 mg/kg	1 -707 mg/kg and 6 - 551 mg/kg TP	South - Cottonwood Inlet	15	•16	•17	• ¹⁸	19	
			Shoreline		.10	.11	• ¹²	1 3	
3	728 mg/kg	9 - 865 mg/kg and 16 - 886 mg/kg	Marina and Western side of Dam	3	.4		•	.7	in the second
		TP				.26	•	.2	Section 2
4	862 mg/kg	17 - 1282 mg/kg and	Middle Reservoir, Eastern side of		1 inst		Stereor Set, Detroido Usido, /Saustrati, 154	ta, Gaoliya, Estibuter Gao ani Ba 505 User County	Zone 1
				CHERRY CREEK RESERVOIR Cartogra Zone 2 Phase 2 Sediment Sampling Zones Data Source					
		23 - 988 mg/kg	Dam and Swim Beach	September 2021	.1 0.2 0.4	0.6 0	.8 Miles		Zone 3
			200311					• • • • • • • • • • • • • • • • • • •	– Phosphorus

 Fractionation Site

Phase 2 Methods

Core Samples

- 2 Depths
- 0-5cm
- 5-10cm
- Phosphorus
- Moisture
- P fractions
- Mineral/ Metal Concentrations

Phase 2 - Moisture and P Concentration

Phase 2 - P Fractionation

Sequential P Extraction

Mobile Fractions

- Loosley Bound Readily Mobile (pore P)
- Iron Bound Mobile (released in anoxia/ low DO)
- Biogenic Mobile (released during decomposition) Permanent Fractions
- Aluminum Bound Refractory/ Permanent
- Refractory Organic Permanent (biologically unavailable)
- Calcium bound Permanent (Ca-PO⁴ mineral P)

Phase 2 - Mobile P Depth Variability

CHERRY CREEK RESERVOIR

Estimated Mobile Phosphorus Concentrations September 2021

Summary

- P conc. and moisture spatial trends
- Highest P in middle of Reservoir (deep)
- Middle of Reservoir also contained highest mobile P (Fe-bound P, Biogenic P)
- Fe-bound P could release from sediments in the summer months when DO is low at the bottom
- Biogenic P may vary seasonally (algal / biological deposition) but mobile during decomposition

Considerations

- Accurate in-situ internal loading estimates would require P-flux study (incubated core samples/ water analysis)
- In-lake management options Alum would bind mobile forms of P and convert them to more permanent (Al-bound)
- Oxidative environment at sediment water interface would reduce Fe-bound P release
- Input to Reservoir Model
- Compare concentrations to other Reservoirs